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A method for computing the ideal magnetohydrodynaniddHD) stability boundaries in
three-dimensional equilibria is employed. Following Hegna and NakdjPhgs. Plasmas, 1336
(1998], a two-dimensional family of equilibria is constructed by perturbing the pressure and
rotational-transform profiles in the vicinity of a flux surface for a given stellarator equilibrium. The
perturbations are constrained to preserve the MHD equilibrium condition. For each perturbed
equilibrium, the infiniten ballooning stability is calculated. Marginal stability diagrams are thus
constructed that are analogous tes,«) diagrams for axisymmetric configurations. A
guasiaxisymmetric stellarator is considered. Calculations of stability boundaries generally show
regions of instability can occur for either sign of the average magnetic shear. Additionally, regions
of second-stability are present. 2003 American Institute of Physic$DOI: 10.1063/1.1622669

I. INTRODUCTION local shear migrate poloidally. Second-stability is observed
when the zeros of the local shear coincide with favorable
A principle aim of stellarator research is to understandcurvature, and when in the unfavorable curvature regions,
the physical mechanisms that limit the plasma stored energyhe magnitude of the local shear is sufficient to stabilize the
The expectation is that pressure driven instabilities will beballooning modes.
excited as the plasma energy increases relative to the mag- To what extent these ideas are applicable to the nonaxi-
netic energy. Since one of the advantages of stellarators iymmetric stellarator devices is an area of present research.
the avoidance of current limiting instabilities, pressureStellarator geometry can be far more complicated than that
driven instabilities may be critical in limiting stellarator op- of the tokamak. It has been suggested that second-stability
eration. may be difficult to obtain in quasihelical equilibftabut
In theoretical studies of particular configurations, localsecond-stability has been observed in a quasipoloidal
criterion deduced from ideal magnetohydrodynafHD)  equilibrium? The existence of a second stable region in stel-
ballooning theory are often used to predict the plasma predarators suggests the possibility of higroperation and is an
sure limits of stellarators. There is, however, experimentaknticing prospect.
evidencé? suggesting that localized ballooning instabilities A feature related to second stability, which we call “self-
set a pressure limit that is too pessimistic for stellarators. stabilization” after Ref. 6 has been observed in various stel-
The intent of this article is to contribute to the under- larator experiment§:'° In these results, geometrical defor-
standing of the physics describing the onset of ideal MHDmations associated with the Shafranov shift result in
ballooning instabilities in stellarator configurations. In an ef-configurations which are stable with respect to Mercier
fort to understand the physical mechanism that causes batrodes as pressure is increased. In this article, we use the
looning instability, Greene and Charicatroduced a tech- term second stability to refer to the stabilization of balloon-
nique for constructing ballooning stability boundaries. In thising modes due to pressure induced variations in the local
method, for a given numerically computed axisymmetricshear, with no geometrical deformations.
equilibrium, a two-dimensional family of equilibria is con- Hegna and Nakajinta extended the theory of Greene
structed by self-consistently imposing perturbations on thend Chance to three-dimensional configurations. In this
pressure gradient and the shear at a given flux surface. Thigork, we study the ideal ballooning stability of a family of
method allows the pressure gradient and average magnetigiasiaxisymmetric stellarator equilibria and present marginal
shear to be varied independently of geometry. For each suddtability diagrams. We find that for this configuration, the
constructed equilibrium, the ballooning stability may be ex-existence of second-stability is observed on some magnetic
amined. surfaces. While the conventional explanation of the appear-
This technique clarified the onset of “second-stability” ance of second-stabilit§instability ensues when regions of
in tokamak configurations. It was noted that ballooning in-unfavorable curvature overlap regions of small local shear;
stabilities arise in regions of unfavorable curvature and smaksecond-stability occurs through pressure modulations of the
local shear. As the pressure gradient is increased, the ihecal shearseems plausible, the nonaxisymmetry of stellara-
creased parallel currents alter the local shear and the zeros tfrs results in a more complicated structure of both the cur-
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vature gnd the Iocgl shear and the mechanism of second- G=(g +t g%)/\/g, (5)
stability is less easily demonstrated.

The outline of this paper is as follows. In Sec. Il, the  1=(gg+¢ 9ge)/ g, (6)
theory of the profile variation method is described. The nu-
merical implementation is discussed in Sec. Ill, and in Sec. B=(9y+e gwf’)/‘/a' (@)

IV benchmarking results for an axisymmetric case are preThese equations, and the force balance equation
sented. The axisymmetric case is useful for developing intu-

ition about the role of curvature and local shear. Section V Vp=JxB, ®)

will present marginal stability diagrams and analysis of awill be used to derive relationships between the perturbed
quasiaxisymmetric stellarator. Some similar features of thejuantities.

marginal stability diagrams are observed. The existence of The method of profile variations is to vary the pressure
unstable regions for either sign of averaged magnetic shegjradientp’ and sheas’ at a given surfacey, while keeping
and the existence of second-stability is observed. Section \the pressurep and rotational-transform undisturbed(to

will discuss the effect of field line variation on the stability owest orde). To achieve this, the variable is introduced:
diagrams. Some discussion of the physical mechanism of

ballooning stability, and the characteristics leading to = b=t (9)
second-stability will be mentioned is given in Sec. VII; how- 7

ever, a full quantitative description of the onset of secondwhere#<1 is a small expansion parameter. By expressing
stability is an involved topic and requires further detailedine perturbed quantities as functionsyofather thany, de-

analysis which is left to future work. rivatives with respect tas will introduce a factoru ™, thus
ensuring that the variations in the gradiepts:’ are lower
II. THEORY order than the variations in the pressure and rotational-

. . . o . transformp, .
This work is essentially a numerical implementation of e pressure and rotational-transform profiles are de-

the theory presented by Hegna and Nakaji‘r]nwho gener-  scribed in the vicinity of a magnetic surfagg, by the ex-
alized the work of Greene and CharicBy applying varia- pansion

tions to, in this case, the pressure gradient and the average
magnetic shear at a selected surface of a given equilibrium, P(#)=pO () +up®(y)+--, (10
and requiring that the coordinate response to the variations _. 1
be such that the resultant state is also an equilibrium, a two- s)=e O +ue Oly)+-, (11)
dimensional family of perturbed equilibria are constructed where p(®,+ () are the pressure and rotational-transform
Using this method, the effect on ballooning stability of profiles of the undisturbed equilibrium apd"),« ) are the
changes in the pressure gradient and changes in the she@rturbation profilegsimilar notation is used below
may be separately studied, with the surface geometry held For the perturbed state to satisfy the equilibrium condi-
fixed. The following shall outline the principles of the tions, it is necessary that the magnetic field also be per-
method and the key assumptions. For additional details thiirbed. This is achieved by perturbing the coordinate trans-
reader should consult Ref. 11. 2 formation

The analysis proceeds using Boozer coordinatedth _ 0 (1)
(14,6,0) being the radialtoroidal flux), poloidal and toroidal X(1,6,0) =X, 0,0+ XY, 0,8) (12
coordinates. The magnetic field is written in contravariantFrom this representation, the perturbed basis vectors are de-

and covariant form as termined:
B=VyXVo+e (y)VIXV, (1) e,= e+ xM+--- (13
B=B(14,0,0)Vy+1(4)V 0+G(y) V¢, @ o=+ uapxD+ -, (14)
Wherv_at is the r_otational-transforrr(; is_ the _poloidal current e§=e(§°)+m9§x(1)+--- _ (15)
exterior to, | is the toroidal current interior tgy, and 8 is
related to the Pfirsch—Schi&r current. The basis vectors, ande, are undisturbed to lowest order,

The magnetic field is defined implicitly through the co- but thee, basis vector has order unity variations. It follows
ordinate transfornx(¢,6,0) from Boozer coordinates to Car- that the metric elementg,,, g,,, andg,, are undisturbed,
tesian coordinates. The metric elements of the transformatiolut thatg,,,, 9,¢, andg,,, have order unity variations. For
gij=6e-e are defined by the basis vectom,=d,Xx,e, consistency, botls andl are perturbed similarly tp andx,
=dyX, ande;=d,x. The magnetic field may be written in but 8 requires order unity variations as it contains thg

terms of the basis vectors as andg,, metric elements.
As can be seen from the perturbed basis vectors, the key
B=(¢ e,+e)/\g. (3)  quantity in the coordinate variation igx™). This is ex-
As Egs. (1) and (2) represent the same magnetic field thepanded in a basis
following conditions must be satisfied: ax@ BXVy vy
Jg=(G++ 1)/B2, @) gy CBHD Tz My (16
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whereC, D, andM are to be determined. The condition that
the magnetic field strength be undisturbed to lowest order is

S. R. Hudson and C. C. Hegna

B v L BXY
s= f i ‘/' :W‘/'. (24)

imposed. This is equivalent to requiring that the variation in
the Jacobian be zero which, given the perturbed basis ved-his term is disturbed by the perturbations as a radial deriva-

tors, becomes

ax(l) ax(o) ax(o) ax(l)
a0 “ o ay Ving=0, 17

giving the constrainM =0. This ensures that the variation
ayxM) lies within the flux surface. The quantitg may be

written C— BY/B? due to Eq.(7) and a relation fo3® is
obtained from the momentum balance equation.

To obtain an expression for the quantify the con-
straints imposed by requiring the perturbations satisfy Eq
(5), (6) and force balance are utilized. This results in an

equation forD,

d . a)D_ a1 1 4} 1
AT R ST L T
0, VI(GHel) [\ 1
_pwy BT _4)_
1 A
- 97 (9

where

fofirg e

is the flux surface average.
All the necessary information to solve for infinitebal-

looning mode equation in the perturbed equilibrium is now? 7
obtained. The ballooning equati¢@28) depends on the fol-
lowing quantities:B? and \/g, which are required to be un-
disturbed to lowest orderg?¥, which is equivalent to

tive is involved. Using the contravariant form Bfgiven in
Eq. (1), the local shear is writtee=+' +3 wheres is given

- d Gayo—19y¢

7 ( ‘50 g ( Jog | @9
The perturbed part of this is

(Gayx)-e,—~19,xY-e,)/(\Jgg"*)=D. (26)

The termD thus represents how the profile variations affect

Sthe local shear. Remarkably, as far as the infinitealloon-

ing equation(28) is concerned, it i®nly the local shear that
is affected by the profile variationther than of course
p’,+'). We conclude that any change in the ballooning sta-
bility caused by the profile variations must be due to varia-
tions in the local shear.

The ballooning mode equation in the perturbed equilib-
rium is written by transforming the angle variables= 6
—+t {,n={ so thata labels the field line labels position
along the field line and thB-V operator becomes

B-V= L7 (27
Vg 9’
whered,=d,+td,. The ballooning equation is given in a
form that highlights the role of thé@ntegrated local shear,

BZ
(QWI +g/L? _§+2(p(0)/ P )VG(G+e 1)

BZ
X (Knt kgl) €= (¢, m) ¢+9WL2)§ (28)

(g(%,gg—g%gag)/\/ﬁ2 and is undisturbed to lowest order; whereL is the integrated local shear

G, ¢, andl,

The curvatures are defined in Ref. 11:

b-V)b-V

Kn:(g)Tlﬁ1 (20)
b-V)b-BXV

Kg:()B—Zw- (21

The unit vector in the direction of the magnetic fiddds

teg‘l‘ eé'
=== (22)
|te0+ e§|
and V¢ may be written
€pX €
V= . (23
Xl

which are undisturbed to lowest order; and the
normal and geodesic curvatures, «4, and the local shear.

L=f"d7/s(n'), (29
Mk

7 is the ballooning angle an@? is the ballooning eigen-
value which in general depends on the surface, field line and
ballooning angler,. This is an ordinary differential equa-
tion with boundary conditioné(*=%)=0. For numerical
work, the boundary condition is th&({ + #.,) =0, wherez,,

is chosen to sufficiently large to contain the mode.

The equilibrium variations describe the separate effects
that the variation inp’ and+’ have on the local shear, and
thus on ballooning stability. Taking’ and+’ as independent
variables, a two-dimensional family of equilibrium surfaces
may be constructed. For each surface ballooning stability
may be determined and marginal stability curves constructed.
Note that if the analysis of the perturbed equilibrium is local
to the original surface), in Eq. (9), as infiniten ballooning
analysis indeed is, then the equations describing how the

Both these quantitieéand B,B?) are undisturbed to lowest variations affect the local shear are exact. Variations of any
order; thus, the normal and geodesic curvatures are also umagnitude are allowed and the stability properties of the per-
disturbed as no radial derivatives are involved. The locaturbed equilibria are characteristic of the geometry of the
shear used by Ref. 11 is original surface.
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In global equilibrium calculations, altering the pressure ,
may well alter the geometry of the magnetic surfaces. Thisin  p_, O D, mnSin(mé—ny)
turn will affect the ballooning stability properties. In this
work, we only investigate the role of profile variations; how- ,
ever, it is possible to incorporate variations in magnetic ge- , .
ometry using the formulation presented by Hegha. —p' 2 Dpimpsin(mo—ny), (37)
Dimensionless quantities are used to describe the varig;,are the summation excludes tn) = (0,0) and
tions in pressure gradient and shear. The equilibrium varia- ' '

tions are parameterized by (,p’). It is convenient to use D (19"")mn (38
the normalized quantitiess{«) defined as ©'mnT m— n)(11g"") 0.’ )
— Ro —, V/(G+el)
S__t (G++ I)fﬁl/g‘wb ’ (30 Dp’mn:(tm_n)(l/gzpzp)oOX[(llglpw)o,o()\/gww)mn
A B AN 31 ~(MG*)0d 11g" ) m]. (39
¢ 2 \(G+e )$1ig?¥ '

All quantities in this expression are provided by the original
These normalizations reduce to the conventional definitiongquilibrium represented in Boozer coordinates. After the
used in the shifted circle model of tokamak studigs. D,'mn:Dp'mn have been evaluated, no further equilibrium
computations or equilibrium variation computations are re-
quired. Arbitrary variations irp’,+’ may be made, and the
perturbed ballooning equation directly solved.

A numerical code, STESASTEllarator s—«), that

The equilibria used in this study are generated bysolves forD and calculates the ballooning eigenvalues has
VMEC.® The VMEC representation, assuming stellaratorbeen developed. The numerical procedure used to solve the

IIl. NUMERICAL IMPLEMENTATION

symmetric equilibriai‘,ﬁ is as follows: ballooning equation is to represent the eigenvector on a dis-
crete grid along the chosen field line, with derivatives evalu-

R=> R, m(¥)cogméy—ne), (32  ated on the half-grid. This reduces the problem to that of

nm finding the eigenvalue and corresponding eigenvector of a

tridiagonal matrix. To this extent, the numerical procedure is
Z=2 Zym(g)sinmoy—ng), (33  equivalent to that used by COBRAwith the exception that

n,m COBRA also uses Richardson’s extrapolation and variational
where, is the VMEC poloidal angle and the summation in refinement to improve the eigenvalue estimate and thus is

the VMEC convention includes the terms=0N for m=0  more efficient numerically. The computational intensive
andn=—N,N for m=1M— 1. The VMEC equilibrium, or component of the calculation is the determination of the co-
more precisely a selected flux surface in the VMEC equilib-efficients of the ballooning equation. This takes the form of a
rium, is occasionally referred to in this article as the “origi- Fourier summation of the metric elements. To implement the

nal” equi”brium, upon which variations in the prof”es are method of profile Variations, the Only additional Computation

performed. required at this point is the determinationlof which, given
The Boozer coordinate information is expressed the original equilibrium ang’,+’, is a Fourier summation of
theD,'nn,Dprmn harmonics and does not add significantly to
R=> RE cogmé—n¢), (34) the calculation. _ _ o
nmo The ballooning eigenvalue solver used in this work has

been bench-marked against COBRAVMETCan extension
b=0+D, $E . sin(mo—ny), (35  of COBRA written in VMEC coordinates. In benchmarking
nm 7 the eigenvalue solver in STESA against COBRAVMEC, it
was necessary to increase both the Fourier resolution of both
z=>, Zﬁmsin(ma—ng), (36)  the VMEC equilibrium and the transformation to Boozer co-
nm ordinates to obtain good agreement with the ballooning pro-
where similarly the summation includes the termsONg  files: particularly so at high pressure. The radial ballooning
for m=0 andn=—Ng,Ng for m=1Mg—1. profile for all configurations considered in this article have

The identities Eqs(4), (5), (6) are useful for examining been verified against COBRAVMEC with good agreement
the numerical accuracy of both the original equilibrium andand will be shown in later sections.
the transformation to Boozer coordinates.

To implement the method numerically it is necessary to
compute the ternD appearing in Eq(18). It is most conve-
nient to solve separately for the coefficientstbfandp’, as To understand the properties of stability boundaries in
later these will be varied separately. By noting that/Y/and  stellarators, it is useful to consider first a simpler case: a
Ng"¥ are even functions for stellarator symmetric large aspect ratio, circular cross-section tokartfdR.This
configurations? D may be written serves both to illuminate some of the features we may expect

IV. AXISYMMETRIC CASE
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FIG. 2. Eigenvector(solid), local shear(dotted, and normal curvature

FIG. 1. (s,a) diagrams for large aspect ratio, circular cross-section mka'(dasheai for the equilibrium in the first stable regiois,@) = (0.50,0.25).
mak. As the aspect ratié increasegdottedA= 10, dashed\ =20, dashed—

dotted A=50, dashed-dotted—dotted—dott&er 100) the stability bound-
ary converges to the infinite aspect ratio mo@sllid) boundary.
induced modulation of the local shear increases. When re-

gions of small local sheds| coincide with regions of nega-

in toroidal configurations, and enables us to see later thteive curvature, a ballooning instability can occur.
9 ' In Figs. 2, 3, 4, eigenvectors, the normal curvature and

nonaxisymmetric effect on stability boundgries. Also, it local shear are shown for the aspect raie 50 configura-
e e U1 15100 i I it sible regonsa) - (0500.29), the
Y d stable region’§,a)=(0.25,0.50) and the second stable re-

::':It"c\),;n'z Ir!c;iazlggozzpegsrstzISrg??:?ouféighi?g?hzogﬂgf]on (s,@)=(0.75,0.00) of Fig. 1. In the first stable region,
lon 1S giv b ure profi zs| is sufficiently large in the negative curvature region to

g?:g?}?r%rzg Odreel’sgzj:;h'fa%?eta:fl I;iﬁ??nv;hi!trircef&/r?;t::?h tabilize the modes. In the unstable regi@hgoes to zero in
y P g p 9 the negative curvature region and a localized mode can exist.

interest that directly affects the ballooning stabilithough ; . . - .
the pressure profile and may alter the geometry and thus In the second stable regiofs| is again sufficiently large in

indirectly affect the ballooning stabilityandp’ itself is var-

ied to construct the stability curves. For each case, $he)(

marginal stability diagram is constructed and as shown in 10
Fig. 1 there is good convergence to the mdddinite aspect

ratio) case. In fact, it is difficult to distinguish th&=100

stability curve withA=cc curve. The numerical resolution of

VMEC is 299 surfaceswith the 240th surface selectedM 0.5
=10N=0, the resolution the Boozer transformationMsg
=40Ng=0. Numerical infinity »,, for the ballooning calcu-

lation is set to* 40X 27 poloidal, with 50 grid points per2

for the finite difference calculation of the ballooning eigen- @ 0.0
value. The large “numerical-infinity” is required to correctly
describe the eigenmodes nea d)=(0,0), as the modes

0.05

0.00 «

become quite extended near this point. o5k -0.05
Ballooning modes are pressure driven instabilities, and )

the driving force is the relative direction of the curvature and

the pressure gradient. The pressure gradient is negative in al 010

these cases, so there is potentially an instability when the _j o L - o ‘
curvature is negative. The effect of local shear is to contrib- L R S %
ute a stabilizing effect through field line bending. The local -10 -5 0 5 10
shear is related to the pressure gradient through the Pfirsch—
Schiiter modulation as described by the term proportional tori. 3. Eigenvector(solid), local shear(dotted, and normal curvature
p™" in Eq. (18), and as the pressure increases the pressur@ashei for the equilibrium in the unstable regios, &)= (0.25,0.50).
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g .
negative curvature region to stabiliz@broade_r)l the eigen- ///////// ‘ // ,
_m(_)d_e. Note that for the purposes of |II_ustrat|0n, “n_umerlcal- ////////;//
infinity” is chosen + 2 X 2 for these eigenvector diagrams. /%///%/////
V. QUASIAXISYMMETRIC CASE ,’/,%//
We consider a quasiaxisymmetric stellarator configura- "’/;/
tion considered in the design of the National Compact Stel- | | | o oes | | |

larator eXperimentNCSX).2%?122The ballooning instability
mechanisms in a quasi-axisymmetric stellarator have beenG. 5. Cross section of Boozer coordinates of i38Bat0.32% (left) and
studied in Refs. 23, 24, 25. The fixed-boundary design (i3g%~16:43%(right) for li383 on the/=0 plane.

is studied. Cross sections in Boozer coordinates of 1i383 at

low pressure and high pressure are shown in Figs. 5 and 6. ) ) ,
The pressure and rotational-transform profiles for varioué’etween these codes. For these ballooning profiles, the ei-

pressures are shown in Fig. 7. For the high pressure Casg(?nvalue depends upon field I|r_1e labeland baIIoon|r_19
there is a noticeable deformation of the coordinates, Whicﬁmgle 7k - L_Jnless stated othng|se, we use the chaice
indicates a change in the geometry of the inner surfaces. A 9:7=0 In these calculations. For this study,N

the method of constructing marginal stability diagrams con-
sidered in this article is geometry dependent, we may expect

that the marginal stability diagrams will change as the pres-

sure (and thus the magnetic coordinate geomketis/ in- .{{:‘:s%f‘:s\\b\\\
creased. Note that these configurations, particularly the high (ST \ $§§-:-::‘\\\\\\\ \
pressure configurations, are not intended to be realized in th{ 5 NN ot iﬁg&&&“\\%\\\.\%\\
experimental operation of NCSX. They may be considered "//,O,‘ \\\\ iigi.#:#:\\\\\ "")‘\\\\\
as suitable example equilibria intended for study. \\W/%a‘;h““‘ EEEEsg\\\\\\\W/%Q““\\\ \
A comparison of the ballooning profilea ¢ — »?) from ~ .éiﬂﬁlﬂi "5‘%#}‘“\' ]
STESA and COBRAVMEC for various pressures are shown|  fi /§ss,,,|w I.}E_‘é‘;;%/// \\s’”y 7
in Figs. 8, 9, 10. The ballooning profiles show that 1i383 is |  [][{i} ’////m\\\\\&#'.'.""”/ 5"“.%//}]\\\ \‘\w//
marginally unstable to ballooning modes 6 4.20%), and &%,‘"I\\‘\\“‘Q:%II/ ,ﬁ'f‘%}//]m)’ ) /
is unstable over a large region of the minor radius<0/3 &%‘ﬂl\“%@ll/ -0.18] %Mh /
<0.95 at3=11.93%; however, as the pressure is further ’0’#.';'_55‘5‘},?/ ":’331'3235’/
increased the surfaces 033<0.6 become stable. T2t ===

r U

The STESA and COBRAVMEC profiles show good ' ' =038

agreement _in the |OC_ati0n of margina_l stability. NOte thatrig. 6. Cross section of Boozer coordinates of i38Bat0.32% (left) and
there are differences in the normalization of the eigenvalug=16.43%(right) for 1i383 on the/=2#/6 plane.
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FIG. 7. Rotational-transforrsolid) and pressurédashedi profiles for 11383~ FIG. 9. Ballooning radial profile from STES#solid) and COBRAVMEC
at f=4.53%,11.2416%,16.43%. (dotted for 1i383 at 3=11.93%.

=18,10 in Eqs(32), (33) which results in 368 Fourier har- shown. The field line labelkr=0 and the ballooning angle
monics, andMz=8M,Ng=8N in Egs. (34), (35, (36 n=0. Figure 11 suggests there will be a second stable re-
which results in 22817 Fourier modes to describe the equigion for the y=0.5 and=0.8 surfaces, but not for thg
librium in Boozer coordinates. The radial resolution used=0.3 surface, in apparent agreement with the ballooning ei-
was ns=100. This resolution was deemed sufficient by thegenvalue profiles. For this case, the location of the original
agreement between the STESA ballooning solver and COequilibrium for the y=0.5 and ¢y=0.8 surfaces in g «)
BRAVMEC. space coincide. As the pressure is increase@=£dl1.93%,
Marginal stability diagrams for 1i383 at g  all the original surfaces are in the unstable region. The sta-
=4.20%,11.93%, and 16.43%, on surfacgs-0.30,0.50 bility boundaries have changed slightly, with the stability
and =0.80 are shown in Figs. 11, 12, 13. In each of theséoundary for the)=0.3 surface now showing the existence
diagrams, the location of the original equilibrium is also of second-stability. For th@=16.43% case, the originat

20 — 20 -
1.5 - 1.5 -
< 1.0F = < 1.0F
0.5 - 0.5
A~ 7\ :
0.0 0.0 ——— :
T | / \\ MR \\I l L
0.0 0.2 0.4 0.6 0.8 1.€ 0.0 0.2 0.4 0.6 0.8 1.0
s s

FIG. 8. Ballooning radial profile from STES#solid and COBRAVMEC FIG. 10. Ballooning radial profile from STES&olid and COBRAVMEC
(dotted for 1i383 at 8=4.20%. (dotted for 1i383 at 8=16.43%.
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—+ PR —+
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- — X - — X

unstable

unstable

sk stable - sk stable -

FIG. 11. (s,«) diagrams for they,=0.3 (solid), 0.5 (dotted, and 0.8 FIG. 13. (s,«) diagrams for they,=0.3 (solid), 0.5 (dotted, and 0.8
(dashegl surfaces in NCSX 1i383 aB=4.20%. The position of the initial  (dashed surfaces in NCSX 1i383 gB=16.43%. The position of the initial
equilibrium (for each surfaceis also shown. equilibrium (for each surfackeis also shown.

=0.5 surfaces is now in the second stable region. The stabilvas encountered with VMEC convergence and the accuracy
ity boundary for each surface suggests the existence aff the transformation to Boozer coordinates at high pressure.
second-stability, provided that dramatic geometric variationgo enable marginal stability diagrams and to determine if the
do not occur. region of second-stability extends over the entire plasma for

It will be interesting to examine higher pressure equilib-stellarator configurations with very higB (8>20%), it
ria to examine whether the suggested second-stability indeadlay be necessary to follow the example of COBRAVMEC
exists on all surfaces simultaneously. An attempt to construaiRef. 18§ and develop the theory of profile variations in
higher pressure equilibria was performed, but with the highyMEC coordinates, thus alleviating some of the convergence
numerical resolution parameters used here some difficultproblems. Nevertheless, through the use of the profile varia-
tion method, this work suggests that quasiaxisymmetric stel-
larators may exist with ballooning stable profiles at hgh

It is interesting to compare the behavior of the eigenvec-
tors, the normal curvature and local shear to that of the large
1 aspect-ration circular-cross section tokamak. In Figs. 14, 15,
16 are shown the behavior of the eigenvectors, normal cur-
unstable - vature, and shear along the field line in the first stable, un-
stable and second stable regions for Be 11.93% case.
The behavior of the curvature and local shear is quite com-
plicated in the stellarator case and for clarity only the region

‘; _ —-/"f> near the “origin” 7,=0 is shown. The valuey,=0 is used
B e + ___»___‘xm-*;'; -~ 7. ] throughout this study. In the three cases shown, this is where
N - the eigenmode peaks and thus it is reasonable to expect that

- 1 this is where the eigenmode is most sensitive to variations in
the local shear.
_sL  stable - At 7,=0, the curvature is negative so there is the poten-
tial for a localized ballooning mode to exist. In the first
stable region, the local shear is negative, apparently with
sufficient magnitude to prevent a localized mode from form-
ing. The ballooning mode for this case is comparatively
broad. Asp’ is increased, the local shear increases and
« passes through zero g{=0 and the ballooning mode now
FIG. 12. (.a) diagrams for they,=0.3 (solic), 0.5 (dotted, and 0.8 becomes localized and unstable. In the second stable region,
(dasheti surfaces in NCSX [i383 a8=11.93%. The position of the initial @S the pressure is further increased the local shear increases
equilibrium (for each surfaceis also shown. and now has sufficient magnitude to stabilize and broaden
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0 0
FIG. 14. Eigenvectotsolid), normal curvaturédashed and sheardotted FIG. 16. Eigenvectotsolid), normal curvaturédasheg, and sheaftdotted
for B=11.93% = 0.80,E,a) =(2.5,1.0). for f=11.93% jy=0.80,5,a) =(—2.5,5.0).

the mode. The behavior is thus similar to that observed in th&1. VARIATION OF FIELD LINE LABEL
tokamak case.
Note that though the simple picture that ballooning in- A unique feature of three-dimensional geometry is that
stability occurs when small local shear and bad curvatur¢he ballooning eigenvalue will depend not only on the flux
coincide is consistent with both the tokamak and quasisymsurface labely and the ballooning angle,, but also on the
metric stellarator case presented here, an exhaustive investiragnetic field line labek: A =\ (¢, a, 5). This is not case
gation and confirmation of this has not yet been performedin axisymmetric systems where the ballooning eigenvalue is
The structure of both the curvature and local shear is quita. function of the surface and ballooning angle only:
complicated in the stellarator case. =N(¢, ). This dependency on magnetic field line label
adds complexity to solving the full WKB problefi;how-
ever, there are examples of three-dimensional systems show-
ing that global ballooning spectrum properties can in some
cases be accurately predicted from the WKB-ballooning
theory?’=2°
In Fig. 17, the dependence of the ballooning eigenvalue

on magnetic field line 4=6—1+¢) is shown for thep
=16.44% case on the magnetic surfages0.30,0.50, and
0.80. Note that for they=0.30,0.80 surfaces, the ballooning
eigenvalue is near the maximum at=0; however, for the
=0.50 surface, the eigenvalue is near a minimum. This
suggests that the stability boundaries shown in the previous

b section will likely be altered as the field line label is allowed
to vary. Additionally, it is interesting to note that on the same
magnetic surface, for all three magnetic surfaces, there is a
mixture of field lines with negative and positive ballooning
eigenvalues.

In Figs. 18, 19, 20, the marginal stability boundaries are

plotted for theB=16.44% case witlw=1.04720. While the

, L % . structure of these diagrams is qualitatively similar to the

i L ! L ; =0 case, there are important quantitative differences. The

-1.5 -10 -05 00 05 1.0 15 diagram for they=0.8 surface suggests that the second
o stable region is fractured.
FIG. 15. Eigenvectofsolid), normal curvaturédashedl and sheafdotted The dependence of the eigenvalue pphas not been
for B=11.93% ;=0.80,&, ) =(0.0,3.0). examined here.
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FIG. 19. (s,«) diagrams for they,=0.3 (solid), 0.5 (dotted, and 0.8
(dashedl surfaces in NCSX 1i383 gB8=11.93% with the field line labed
=1.04720. The position of the initial equilibriuffior each surfaceis also
shown.

FIG. 17. Dependence of ballooning eigenvalue on field line labfer the
B=16.43% case for surface¢=0.30 (solid), 0.50 (dotted, and 0.80
(dashegl

VIl. DISCUSSION . L . . .
in the vicinity of a particular magnetic surface, keeping the

In this work, a study of the ideal MHD ballooning sta- magnetic geometry fixed, while ensuring that the MHD equi-
bility properties of a quasiaxisymmetric stellarator is pre-jibrium condition is satisfied. By using this technique, a gen-
sented. In particular, the marginal stability properties as funceralization of §,«) curves used prominently in tokamak bal-
tions of plasma profiles have been examined using theoning calculations can be constructed for general three-
procedure introduced by Greene and Charaed general- dimensional equilibria.
ized to three-dimensional systems by Hegna and Nakajima.  The marginal stability diagrams for the quasiaxisymmet-
This technique allows one to manipulate the plasma profilegic stellarator case studied in this article have a number of

10 T T T T T
—
----- i
- — X
5
unstable
(7] ol TR T T (7]
sk stable - sk stable -
-10 . I . I . I . I . -10 . I . I . I . I .
0 2 4 6 8 10 0 2 4 6 8 10
24 24

FIG. 18. (s,«) diagrams for they,=0.3 (solid), 0.5 (dotted, and 0.8
(dashedl surfaces in NCSX 1i383 apB=4.20% with field line labela
=1.04720. The position of the initial equilibriufifor each surfaceis also
shown.

FIG. 20. (s,«) diagrams for they,=0.3 (solid), 0.5 (dotted, and 0.8
(dashedl surfaces in NCSX 1i383 app=16.43% with field line labela
=1.04720. The position of the initial equilibriuffior each surfaceis also
shown.
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similarities to the marginal stability diagrams of axisymmet- pressure gradient may be altered to optimize stability, and the
ric tokamaks; however, there are some important differencegqressure profile itself be determined from the pressure gradi-
Both configurations show a stability boundary in theent profile. Alocal method of optimization can become stuck
“tokamak-like” shear &~ —dt/dy>0) region where the in local minima. By incorporating the method of profile
critical pressure gradient for instability risésearly) mono-  variations, the optimizer may be able to determine that
tonically with average magnetic shear. This can be seen bgcross a small region of previously impassable instability lies
comparing thes>0 regions of Fig. 1 and Figs. 11, 12, 13. In a region of stability.
this “strong-shear” limit, the ballooning eigenmode is local- For stellarator geometry, the ballooning eigenvalue gen-
ized to a narrow range along the field line where the curvaerally depends on all three coordinates, &, 7). Conse-
ture is unfavorable. In this region of profile space, the quaquently, the isosurfaces of unstable eigenvalues may have
siaxisymmetric stellarator and the tokamak have similaispherical topology in this space, in addition to the topologi-
ballooning properties. cal toroidal surfaces that axisymmetric configurations pos-
Where the quasiaxisymmetric stellarator and axisymmetsess. This may lead to the global modes constructed from ray
ric tokamak differ is whers becomes small. For tokamaks, tracing being highly localized. Such highly localized modes
there are no unstable ballooning modes for zero omay be stabilized by nonideal effects, and thus not be the
“stellarator-like” magnetic shearg=0); however, for stel- deciding factor in determining pressure limits in stellarators.
larators, unstable ballooning modes can exist in $ked
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